Alaska COVID-19

Dr. Anne Zink Alaska's Chief Medical Officer April 2, 2020

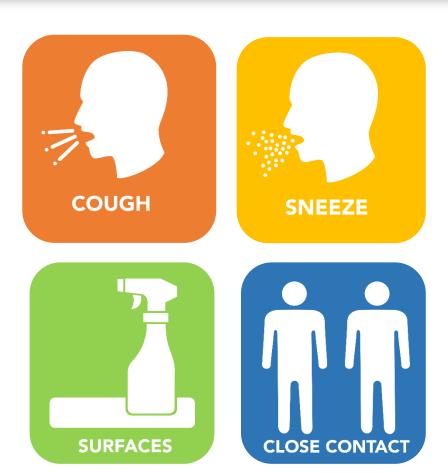
Covid-19 Pandemic

Coronavirus Disease 2019, or **COVID-19**, was first identified in patients with respiratory illness in Wuhan, China in november 2019.

Covid-19 is a zoonotic, new viral respiratory illness against which we have no natural immunity.

Covid-19 is pandemic.

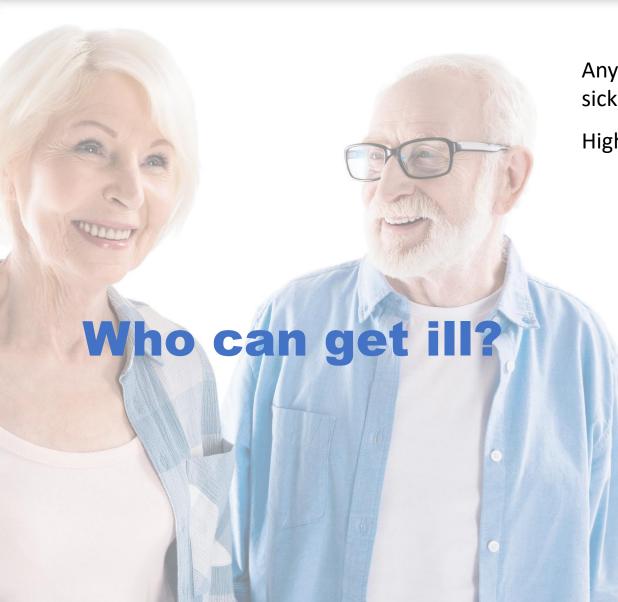
We continue to see cases throughout Alaska


We learn new things about this disease every day which necessitates constant response management and change.

Symptoms include fever, cough, shortness of breath

How is it spread?

- Coughs, sneezes, surfaces, close contact.
- Maximum viral shedding early in the disease
- Asymptomatic or mildly symptomatic people may be sharing the disease



When are people most contagious?

- The onset and duration of viral shedding and the period of infectiousness for COVID-19 are not yet known.
- It is possible that COVID-19 may be detectable in the upper or lower respiratory tract for weeks after illness onset, similar to infections with MERS-CoV and SARS-CoV.
- Detection of viral RNA does not necessarily mean that infectious virus is present.
- There are reports of asymptomatic infections (detection of virus with no development of symptoms) and pre-symptomatic infections (detection of virus prior to development of symptoms) with COVID-19, but their role in transmission is not yet known.

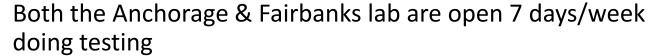
What are the symptoms of covid-19?

- Prolonged incubation period with no symptoms (14 plus days)
- Onset of fever can be sudden, typically between 100.4 degrees and 103.5 degrees
- Illness often unfolds slowly over several days
- Body aches and tiredness
- Decreased appetite
- Headache
- Deep, dry cough
- Shortness of breath
- Drop in blood oxygen levels
- acute respiratory distress syndrome
- Special note: this is a "dry" illness there is typically no congestion
- More and more reports of a loss of sense of small or taste

Anyone and everyone. All people, all ages. Young can still get very sick, just less likely to die.

Higher risk

- Over 60
- People who live in a nursing home or long-term care facility
- Underlying heart, lung conditions
- Diabetes
- Immunosuppression
- People with severe obesity (body mass index [BMI] of 40 or higher)
- People with chronic kidney disease undergoing dialysis
- People with liver disease
- Young can still get very sick, just less likely to die


Clinical
Characteristics of
the Study Patients,
According to
Disease Severity and
the Presence or
Absence of the
Primary Composite
End Point.*

Characteristic	All Patients (N=1099) Disease Severity		e Severity	Presence of Primary Composite End Point†	
		Nonsevere (N=926)	Severe (N=173)	Yes (N=67)	No (N=1032)
Age					
Median (IQR) — yr	47.0 (35.0-58.0)	45.0 (34.0-57.0)	52.0 (40.0-65.0)	63.0 (53.0-71.0)	46.0 (35.0-57.0)
Distribution — no./total no. (%)					
0–14 yr	9/1011 (0.9)	8/848 (0.9)	1/163 (0.6)	0	9/946 (1.0)
15–49 yr	557/1011 (55.1)	490/848 (57.8)	67/163 (41.1)	12/65 (18.5)	545/946 (57.6)
50–64 yr	292/1011 (28.9)	241/848 (28.4)	51/163 (31.3)	21/65 (32.3)	271/946 (28.6)
≥65 yr	153/1011 (15.1)	109/848 (12.9)	44/163 (27.0)	32/65 (49.2)	121/946 (12.8)
Female sex — no./total no. (%)	459/1096 (41.9)	386/923 (41.8)	73/173 (42.2)	22/67 (32.8)	437/1029 (42.5)
Smoking history — no./total no. (%)					
Never smoked	927/1085 (85.4)	793/913 (86.9)	134/172 (77.9)	44/66 (66.7)	883/1019 (86.7)
Former smoker	21/1085 (1.9)	12/913 (1.3)	9/172 (5.2)	5/66 (7.6)	16/1019 (1.6)
Current smoker	137/1085 (12.6)	108/913 (11.8)	29/172 (16.9)	17/66 (25.8)	120/1019 (11.8)
Exposure to source of transmission within past 14 days — no./ total no.					
Living in Wuhan	483/1099 (43.9)	400/926 (43.2)	83/173 (48.0)	39/67 (58.2)	444/1032 (43.0)
Contact with wildlife	13/687 (1.9)	10/559 (1.8)	3/128 (2.3)	1/41 (2.4)	12/646 (1.9)
Recently visited Wuhan‡	193/616 (31.3)	166/526 (31.6)	27/90 (30.0)	10/28 (35.7)	183/588 (31.1)
Had contact with Wuhan residents‡	442/611 (72.3)	376/522 (72.0)	66/89 (74.2)	19/28 (67.9)	423/583 (72.6)
Median incubation period (IQR) — days§	4.0 (2.0-7.0)	4.0 (2.8-7.0)	4.0 (2.0-7.0)	4.0 (1.0-7.5)	4.0 (2.0-7.0)
Fever on admission					
Patients — no./total no. (%)	473/1081 (43.8)	391/910 (43.0)	82/171 (48.0)	24/66 (36.4)	449/1015 (44.2)
Median temperature (IQR) — °C	37.3 (36.7–38.0)	37.3 (36.7–38.0)	37.4 (36.7–38.1)	36.8 (36.3-37.8)	37.3 (36.7–38.0)
Distribution of temperature — no./total no. (%)					
<37.5°C	608/1081 (56.2)	519/910 (57.0)	89/171 (52.0)	42/66 (63.6)	566/1015 (55.8)
37.5–38.0°C	238/1081 (22.0)	201/910 (22.1)	37/171 (21.6)	10/66 (15.2)	228/1015 (22.5)
38.1–39.0°C	197/1081 (18.2)	160/910 (17.6)	37/171 (21.6)	11/66 (16.7)	186/1015 (18.3)
>39.0°C	38/1081 (3.5)	30/910 (3.3)	8/171 (4.7)	3/66 (4.5)	35/1015 (3.4)
Fever during hospitalization					
Patients — no./total no. (%)	975/1099 (88.7)	816/926 (88.1)	159/173 (91.9)	59/67 (88.1)	916/1032 (88.8)
Median highest temperature (IQR) — °C	38.3 (37.8–38.9)	38.3 (37.8–38.9)	38.5 (38.0–39.0)	38.5 (38.0–39.0)	38.3 (37.8–38.9)
<37.5°C	92/926 (9.9)	79/774 (10.2)	13/152 (8.6)	3/54 (5.6)	89/872 (10.2)
37.5–38.0°C	286/926 (30.9)	251/774 (32.4)	35/152 (23.0)	20/54 (37.0)	266/872 (30.5)
38.1–39.0°C	434/926 (46.9)	356/774 (46.0)	78/152 (51.3)	21/54 (38.9)	413/872 (47.4)
>39.0°C	114/926 (12.3)	88/774 (11.4)	26/152 (17.1)	10/54 (18.5)	104/872 (11.9)

Testing

"PCR" testing

- Need enough viral load
- Swabs needed for obtaining samples
- Medium
- Lab environment needed to do PCR test


- ASPHL performed >2,000 tests since 1 March 2020
- VTM now available from Alaska State Virology Lab

Additional tests – 30 types of tests have been approved by FDA

 Be aware of counterfeit COVID-19 tests that claim FDA approval. As of today, the FDA says they have not approved any serological COVID test for clinical diagnostic use.

What testing tells us

Testing is important to identify who has COVID-19 which determines:

- Treatment options
- Mitigation measures such as the need for strong social distancing mandates
- Who has recovered

Sensitivity of a test indicates how many sick people are correctly identified as having the disease

Specificity of a test indicates how many healthy people are correctly identified as not have the disease

Both of these are important to accurately identify who does and does not have COVID-19

Types of testing

Current test – Real-Time Reverse Transcriptase (RT)-PCR

- Can take 4-6 hours to run test after sample is received at lab
- Limitations: samples must be sent to a lab where test is run, patient must have a high enough viral load otherwise will be negative, requires large machines in a lab environment

Rapid-test by Abbott

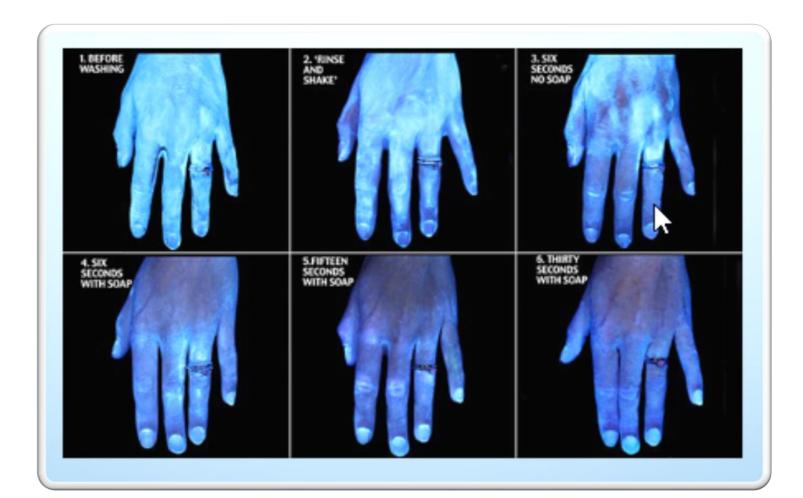
- Point-of-care testing at health care facilities with small machine
- Results in 15 minutes
- Limitation: Low sensitivity
- Alaska has not received any of these yet

Serology testing

- Under development by CDC
- Will look for presence of antibodies which are made in response to infections
- Helps detect infections with few or no symptoms
- Indicator for how widespread COVID-19 is in a population

Currently there are no home tests for COVID-19

Abbott's ID NOWTM machine Photo courtesy of Abbott


Testing capacity in rural areas

- Drive-through COVID-19 testing is now available in Bethel through the Yukon Kuskokwim Health Corporation in the parking lot next to the old hospital.
- YHKC has 48 villages and 58 federally recognized tribes; 138 Community Health Aides (CHA), every village has at least one CHA that has been trained in specimen collection.
- Village Health Aides were trained via the distance learning program sponsored by ANTHC.
- Testing kits were sent out to select villages with large populations, and all of our SRCs have testing kits (that is 5 of our larger villages that have PA-C or NP.)

Alaska is in the top 10 for testing

Importance of hand hygiene

- This progression of handwashing time shows how important it is to wash for at least 20 seconds to adequately remove germs
- Intensity of glow on the hands reflects the amount of germs remaining
- Remaining germs can be transferred to face and surfaces which can transmit the virus

Hygiene for all

- Wash hands with soap and water for at least 20 seconds
- Use hand sanitizer with at least 60% alcohol when soap and water not available
 - Alaska-based businesses producing hand sanitizer to increase availability
- Households with no running water
 - Use handwashing basins with water and bleach
 See Yukon Kuskokwim Health Corporation: www.ykhc.org/covid-19-disinfection-without-running-water/
- Don't touch face, including eyes, nose and mouth
- Cover coughs and sneezes with a tissue or into your elbow if a tissue is unavailable; immediately dispose of tissue after use and wash hands

Important to limit the survival of the virus in our environments, including on surfaces and everyday items

Cleaning removes germs, dirt and other impurities; reduces number of germs but does not kill them

Disinfecting using chemicals on EPA-registered disinfectant list kills germs on surfaces after they have been cleaned

CDC has recommendations specific to

- Households: <u>www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html</u>
- Businesses and community facilities: www.cdc.gov/coronavirus/2019-ncov/prepare/disinfecting-building-facility.html
- Health care facilities: www.cdc.gov/coronavirus/2019-ncov/infection-control/control-recommendations.html

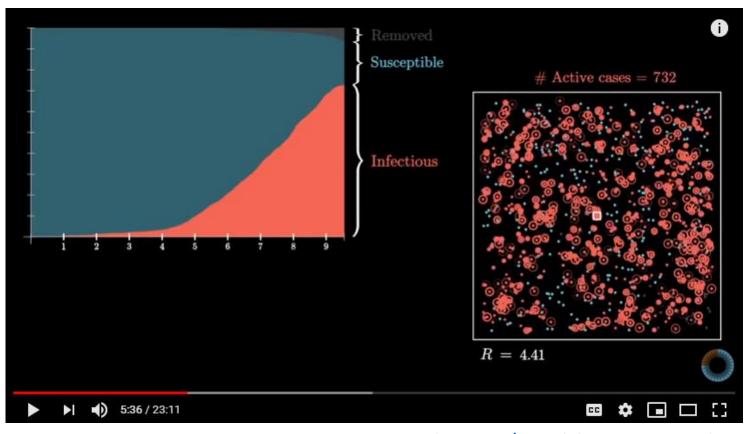
Especially important at businesses that remain open, such as grocery stores, where people still need to access essential services

Community Mitigation: Social Distancing

Primary goal is to slow the spread of virus within a community

Safeguards everyone, but especially important to protect:

- People at high-risk of severe illness
- Health care workforce
- Critical infrastructure workforce


Strategies are customized to each community and region's local situation

- Limit movement of people (shelter-in-place, travel restrictions)
- Practice personal protective measures (handwashing, don't touch face)
- Monitor local information (stay apprised of conditions in the area you live)

Community Mitigation: Simulating an Epidemic

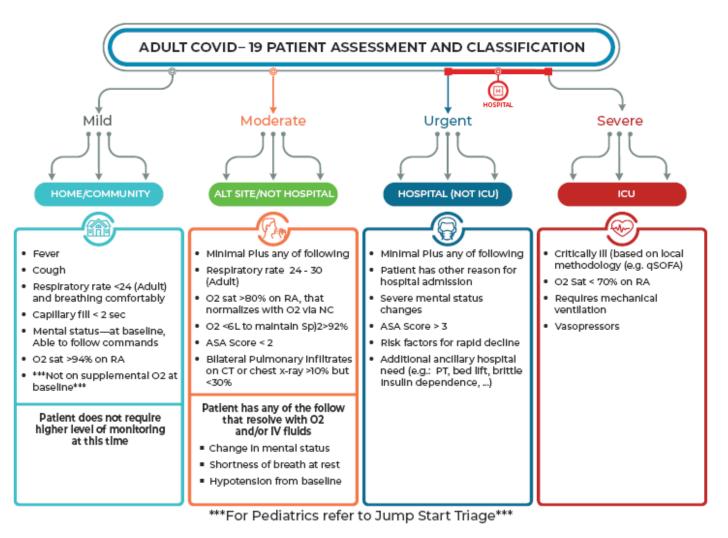
Modeling, such as the one in Simulating an Epidemic, can help inform community mitigation strategies

Shows how a frequently-visited central location like a grocery store plays a role in spreading the virus

www.youtube.com/watch?v=gxAaO2rsdIs

Building capacity – personal protective equipment

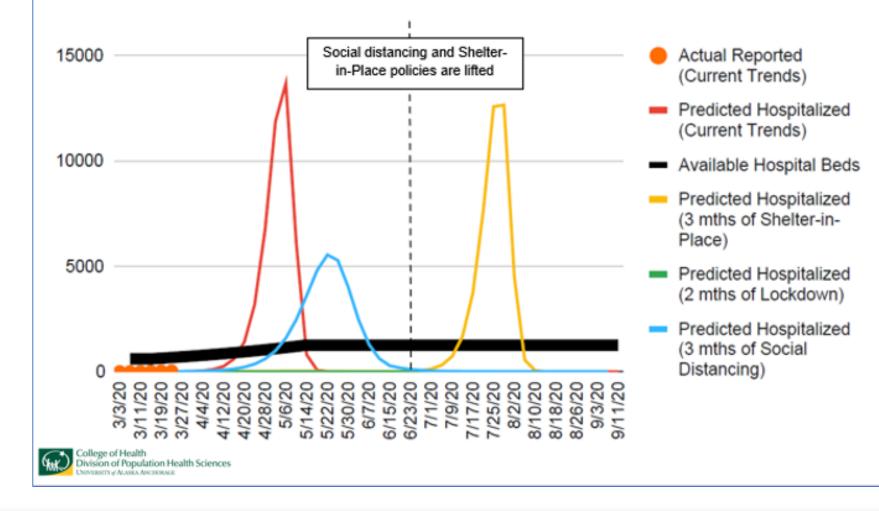
- Local Alaskans are building and donating face shields.
- Swabs are being fabricated locally
- Commercial grade face masks
- Full-body protective gear
- UAA is partnering with industry to build other needed equipment from ventilators to hand sanitizer.



Building health care capacity

RESOURCES SHIPPED	QUANTITIES SHIPPED	BALANCE REMAINING
FACE SHIELDS	7026	1060
GLOVES (boxes)	3701	2191
GOWNS	4682	2135
N95 MASKS	26457	10266
SURGICAL MASKS	72900	65100
VENTILATORS	0	70

To accommodate additional supplies, DHSS has doubled warehouse space from one 10,000 square foot warehouse to two warehouses, each with 10,000 square feet. Intent is to ensure sufficient space to efficiently receive and ship inventory of critical supplies.

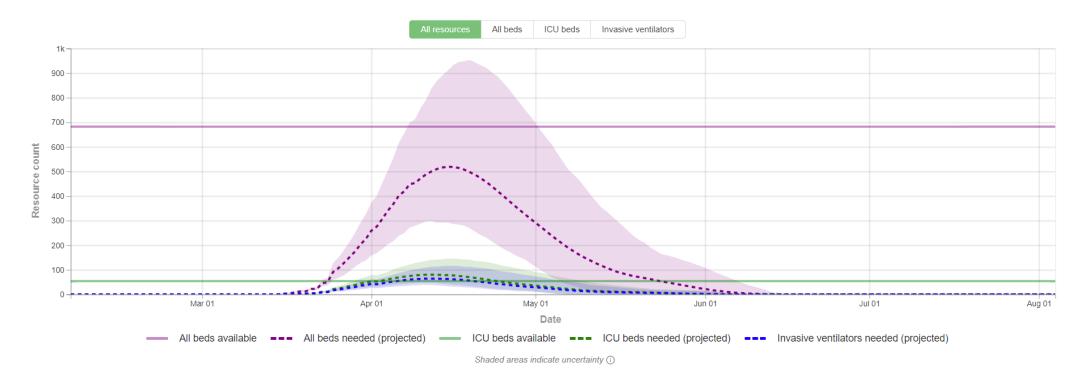

Types of patients

Alternate Care Sites

Figure 3. Model of hospitalizations over time in Alaska based on the COVID ACT NOW modeling framework through March 23, 2020

COVID ACT NOW Modeling Framework

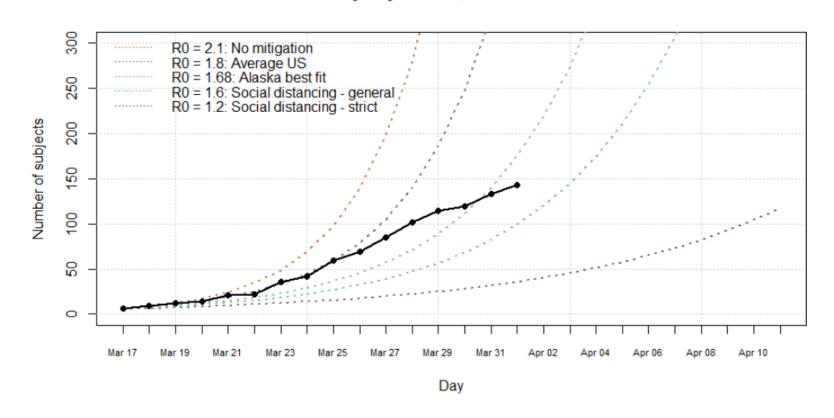
Conclusion from ACTNOW Model


- If No Action was taken, the model predicts
 - Hospital bed capacity would be reached within weeks
 - Up to 11,000 deaths from COVID-19
 - At the peak, 3700 persons would need hospitalizations in one day
- Because of Actions taken, we are not on that track
- The Shelter-in-Place scenario predicts we do not exceed hospital capacity
- Lifting social distancing measures will likely cause a spike in cases
 - approximately 1 month after
 - number needing hospitalization may be as high as No Action scenario

University of Washington - IMHE

The Institute for Health Metrics and Evaluation (IHME) is an independent global health research center at the University of Washington.

University of Washington - IMHE


https://covid19.healthdata.org/projectionsojections

DHSS modeling: 10-day trajectory of confirmed cases

- Indicated in black, that Alaska observed cumulative case counts:
 - Diverted below the "worst-casescenario" on March 20th
 - Diverted below the US average on March 26th
 - Since March 25th as been tracking towards the general social distancing projection

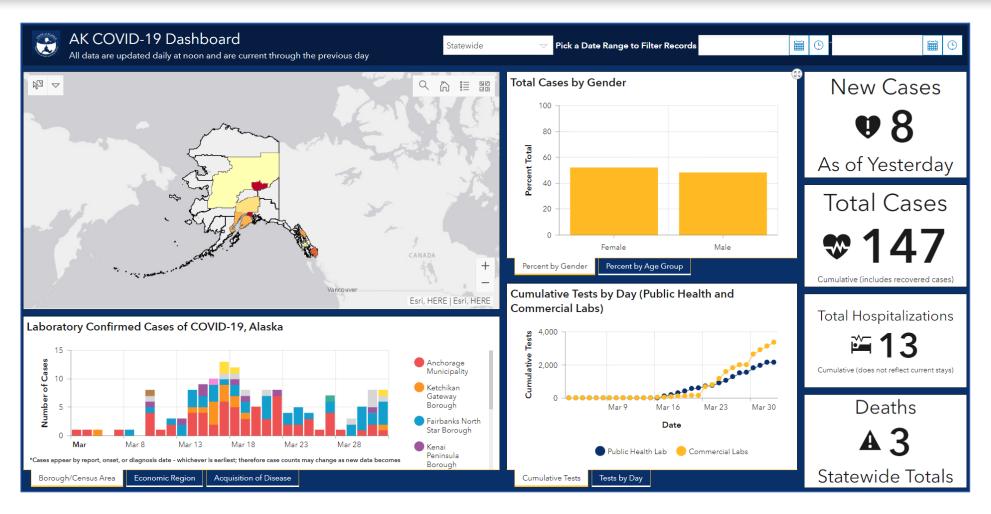
Caution used of confirmed cases has a lag from the implemented mitigation strategies

SIR Model 10-day trajectories, Alaska 3/17/20 - 4/1/20

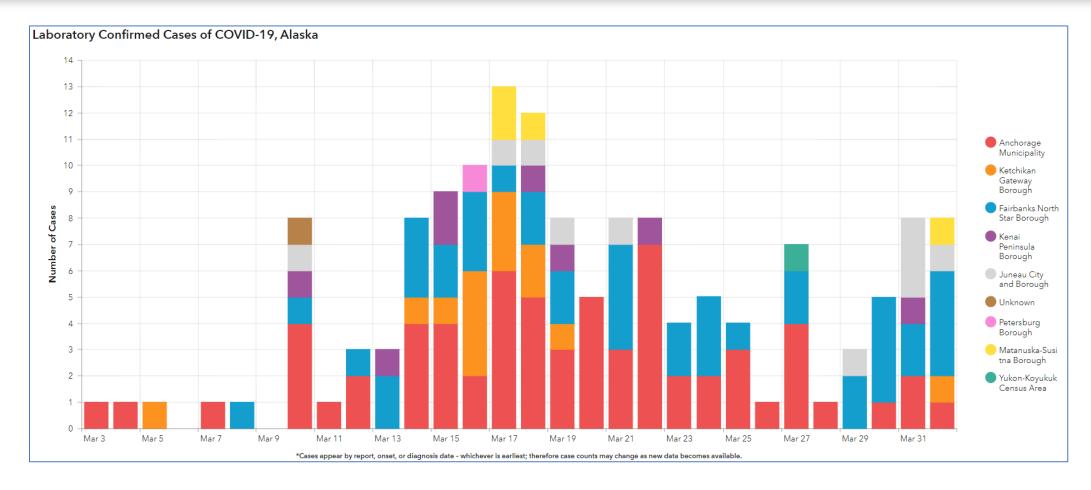
Funding for Small Hospitals

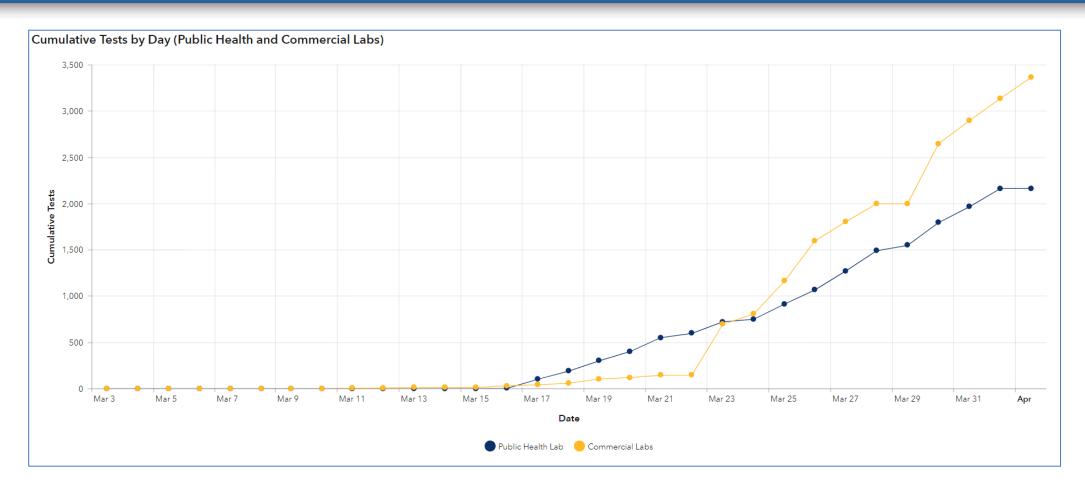
			Estimated Funding
	CMS#	Hospital Name	Amount
1	21307	Cordova Community Medical Center	90,000
2	20008	Bartlett Regional Hospital	90,000
3	21312	Samuel Simmonds Memorial Hospital	90,000
		Kanakanak Hospital (Bristol Bay Area	
4	21309	Health Corporation)	90,000
5	21304	Petersburg Medical Center	90,000
6	21313	South Peninsula Hospital	90,000
7	21306	Providence Kodiak Island Medical Center	90,000
		Providence Seward Medical and Care	
8	21302	Center	90,000
9	21301	Providence Valdez Medical Center	90,000
10	21305	SEARHC Wrangell Medical Center	90,000
11	20018	Yukon-Kuskokwim Health Corporation	90,000
12	21314	SEARHC Mt. Edgecumbe	90,000
13	21308	Norton Sound Regional Hospital	90,000
14	21311	PeaceHealth Ketchikan	90,000
15	21310	Maniilaq Health Center	90,000
			\$1,350,000

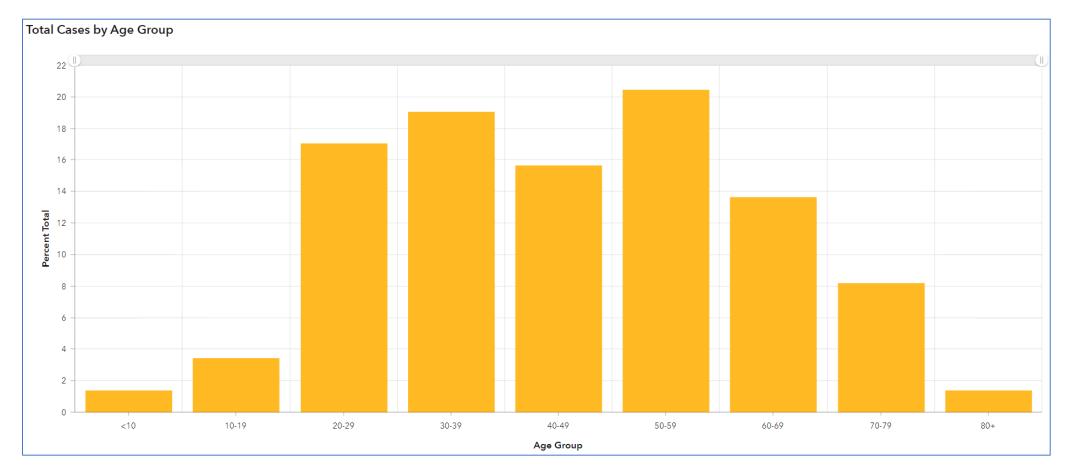
- Federal CARES Act Funding for small rural hospitals from Health Resources and Service Administration (HRSA)
- Awarded to states by late April and provided to hospitals through Small Hospital Improvement Program.
- Intent: broad and covers COVID related activities; if the hospital can link purchases and activities to COVID related needs then its allowable.
- Fifteen eligible Alaska rural hospitals with 49 bed or less qualify for approximately \$90,000 each; total funding \$1,350,000 for Alaska.

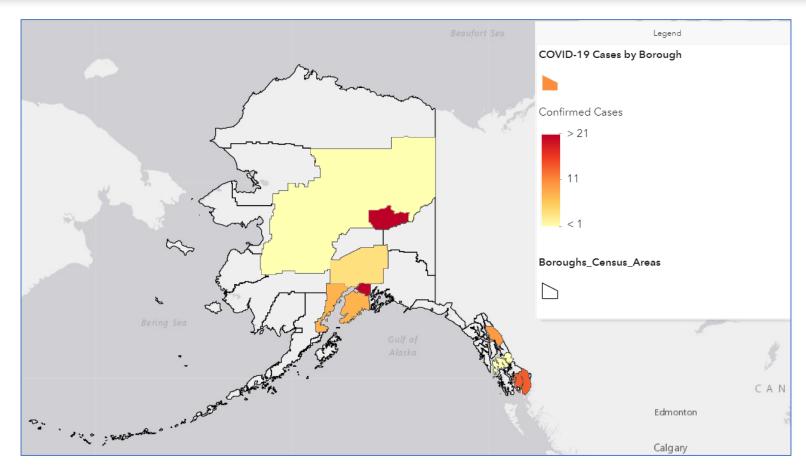

Senior and Disabilities Services

- Hosting webinars with provider organizations to give COVID -19 and service updates.
- Using the e-alert list-serve to update providers state mandates and other program news.
- Re-purposing the Electronic Visit Verification email for provider suggestions/comments about changes to services or to request flexibilities in waivers or state plan services.
- Implementing CMS-approved flexibilities for Medicaid waivers through Appendix K.
- Requesting flexibilities for State Plan services from CMS through 1135 Amendment.
- Requesting all certified home and community-based service providers report ill individuals to Epidemiology and through Central Intake to offer providers technical assistance.
- Working with provider groups on best practices across our service array.
- Working to provide additional grant funding for senior meals and allowing flexible use of grant funds to support staff and recipients.






Dashboard


By Date and Location

Cumulative Testing

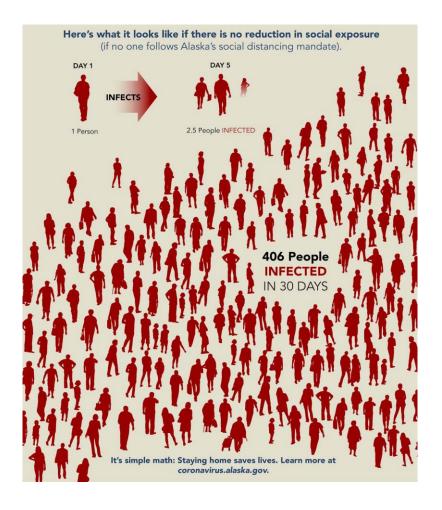
Cases by Age Group

State COVID Cases

What you can do - Stores

- Limit your shopping trips
- Go during off-hours to minimize interaction with crowds
- Use pickup or delivery services if possible
- Wipe down the handles on the shopping card or basket
- Wash your hands after shopping (and all the time!)
- Reach out to elders or others to see if you can pick groceries up for them
- Support local restaurants by ordering take-out if possible

Graphic courtesy of Anchorage Health Department


What you can do - Masks

- Wear a thickly woven homemade mask when you must go in public to minimize the asymptomatic spread
- Save the N95 masks for medical professionals who need them
- Find easy instructions on the internet for constructing masks

What you can do – Social Distancing

- Stay at least six feet away from others
- Minimize interactions when entering stores
- Avoid all gatherings
- Physical distance is what's important
- Keep in touch with loved ones by phone, text, email and Skype or Zoom calls
- We're doing this for all Alaskans to flatten the curve

What you can do – Take care of each other

- Take care of each other: We can do this, Alaska
- Stick to the basics
- Wash your hands for at least 20 seconds
- Clean all high touch surfaces regularly
- Minimize touching anything else
- Never touch your eyes, mouth or nose
- Take care of your physical and mental health
- Take care of those who are more vulnerable in your community
- Reach out if you need help
- We're stronger together, we'll get through this

